1° CONGRESSO LATINO-AMERICANO DE DRENAGEM ÁCIDA DE MINA

24 e 25 de novembro de 2021 Belo Horizonte • MG • Brasil

1ST LATIN AMERICAN ACID MINE DRAINAGE CONGRESS November 24-25, 2021 • Belo Horizonte • Mg • Brazil

1^{er} Congreso Latinoamericano de Drenaje ácido de Mina 24-25 de noviembre de 2021 • Belo Horizonte • Mg • Brazil

SANAP

MINING INFLUENCED WATERS THEIR CHEMISTRY & TREATMENT

Tom Wildeman Colorado School of Mines, Golden, CO - USA twildema@mines.edu

Flavio Vasconcelos HidroGeo Belo Horizonte, MG - Brasil

Belo Horizonte, 24 de Novembro de 2021

- Most treatment methods have the same objectives the differences are:
 - In the time it takes for treatment
 - How mechanical is the treatment system
 - How much reactants require continuous human assistance to be added

- Other waters to treat besides ARD
- Other treatment methods to try besides hydroxide precipitation, sulfate reduction & aerobic oxidation.
- All the waters that you will see I have been asked to treat over the last 20 years.

Today, look at ARD, As, & Mn

DEFINITIONS:

- Mining Influenced Water: (MIW) Any water whose chemical composition has been affected by mining or mineral processing activities.
- Acid Rock Drainage: (ARD) A MIW that has mineral acidity.
- Passive Treatment: Any water treatment process that:
 - Utilizes common geochemical reactions typically assisted by microbes or plants,
 - Does not require the addition of chemical reagents, power and/or short term exchange of process media,

- Functions without human intervention for long periods.

I^o Congresso Latino-Americano de Drenagem ácida de Mina 1st Latin American acid mine drainage congress 1^{er} Congreso Latinoamericano de Drenaje ácido de Mina

MIW TREATMENT OBJECTIVES:

- Acid Rock Drainage
 - Mineral Acidity, esp. Fe & Al
- Mineral Processing Waters
 - Usually cyanide & other anions of As & Se
- Marginal Waters
 - Circum-neutral with contaminants above aquatic standards
- Residual Waters
 - High total dissolved solids (TDS)

ACID ROCK DRAINAGE (ARD) in mg/L:

	Quartz Hill	JIC	Coal	Buckeye
рН	2.5	3.0	2.9	5.9
AI	60	20	36	21
Fe	750	1.8	180	580
Mn	80	1.2	50	20
Cu	55	0.12		0.03
Zn	150	0.20		0.24
Cd	0.80	0.003		
Pb	0.14			0.02
As	1.5	0.008		0.01
SO4	4000	184	2050	750

Engenhasia e Gestão de P.

MINERAL PROCESSING WATER in mg/L

	Gilt Edge	Rain	Gold mine	Zn Proc
рН	9.0	8.0	8.6	5.5
Fe	470	0.05	0.5	0.60
Mn		0.47		187
Cu	78	3.3	8.3	0.024
Zn			0.06	657
Cd	0.09			1.9
As		0.09	20	
Se		0.2	0.05	
CN (Total)	230	4	~100	
SO4	300	400	1300	5800

MARGINAL WATERS in mg/L

	Westfork	Ferris Haggerty	Ni Mine	Rico
рН	7.9	6.6	7.1	7.0
Mn	0.01	0.03	0.37	0.66
Ni		0.05	7.5	0.01
Cu	0.02	20.6	0.015	
Zn	0.21	0.07	0.20	11.4
Cd	0.002	0.003	0.009	0.03
Pb	0.70			
SO4	63	48	1005	450
Alk.	156		33	595

Hidro Ge G Engenharia e Gestão de Projetos

RESIDUAL WATERS in mg/L:

	Wyoming	Coal	Oil Shale	Refinery
рН	8.2	7.1	7.9-8.8	7.8
Na	800	940	1000	180
К	92	3	743	82
Са	260	290	47	160
Mg	34	100	33	170
Cl	1040	1000	69	350
SO4	900	1600	3000	600
Alk.	280	200	371	
TDS	3500	4200	5300	

MIW SUMMARY:

- Marginal waters are easily treated by passive methods
 - High flow may be an issue
- ARD & process waters can be treated by passive methods.
 - Chemical loading of cells may be an issue.
- Residual waters are very difficult to treat by any chemical method.
 - Billion dollar question is how to remove sulfate by an inexpensive method.

MIW TREATMENT OBJECTIVES:

- Acid Rock Drainage
 - Mineral Acidity, esp. Fe & Al
- Mineral Processing Waters
 - Usually cyanide & other anions of As & Se
- Marginal Waters
 - Circum-neutral with contaminants above aquatic standards
- Residual Waters
 - High total dissolved solids (TDS)

METHODS FOR REMOVAL:

- Precipitation / Mineral Formation
 - Sulfides, Hydroxides, or Carbonates
- Adsorption
 - Not as permanent,
 - Can be used for temporary removal
 - Can have adsorption onto organic or inorganic compounds
- Formation of Organic Compounds
 - Not as stable as inorganic precipitates

PRECIPITATION CONTROL BY pH

 $H_2O \iff H^+(aq) + OH^-(aq)$

 $\begin{array}{l} \mathsf{H}_2\mathsf{CO}_3 \ (\mathsf{aq}) \Leftrightarrow \mathsf{H}^+ (\mathsf{aq}) + \mathsf{HCO}_3^- (\mathsf{aq}) \\ \mathsf{HCO}_3^- (\mathsf{aq}) \Leftrightarrow \mathsf{H}^+ (\mathsf{aq}) + \ \mathsf{CO}_3^{-2} (\mathsf{aq}) \end{array}$

 $H_{2}S(aq) \iff H^{+}(aq) + HS^{-}(aq)$ $HS^{-}(aq) \iff H^{+}(aq) + S^{-2}(aq)$

As pH increases, the anions become available

HYDROXIDE SOLUBILITY

TOM'S ESTIMATE OF SULFIDE SOLUBILITIES

METAL REMOVAL BY SULFIDE PRECIPITATION

CELL E REMOVAL TRENDS

TOM'S ESTIMATE OF CARBONATE SOLUBILITIES [M] < 1.0 mg/L

ADSORPTION ONTO AI(OH)₃

COMPETITIVE ADSORPTION ONTO ORGANIC SUBSTRATE

Adsorption is less permanent removal

SITUATIONS AGAINST REMOVAL

- Acid / Base Conditions
 - pH < 2: most cations are soluble</p>
 - pH >11: As, Se, some cations are soluble
- Oxidation State
 - Low Oxidation State: Fe, Mn are soluble
 - High Oxidation State: U, Mo are soluble
 - Oxidation / Reduction reactions are often slow
- Formation of Complexes
 - Cyanides: Fe, Cu
 - Carbonates/ Hydroxides: Pb,

HYDROXIDE SOLUBILITY

-8-

-8-

Pb

Ni

Cu

Cd

Ag

Fe²⁺

Zn

Fe³⁺

Al³⁺

~~

Mineral Acidity & Acid-Generating Reactions

Hydrolysis of metal cations

 $Fe^{3+} + 3H_2O \iff Fe(OH)_3 + 3H^+$

 $AI^{3+} + 3H_2O \iff AI(OH)_3 + 3H^+$

ALUMINUM PRECIPITATION

SOURCES OF ALKALINITY

ACTIVE

- Hydroxides: NaOH, Ca(OH)
- Carbonates: Na₂CO₃, NaHCO₃
- Ammonia

PASSIVE

- Microbial (sulfate reducing bacteria)
 - $2 H^{+} + SO_{4}^{=} + 2 "CH_{2}O" --> H_{2}S +2 HCO_{3}^{-}$
- Abiotic: slow liberation of Ca(OH)₂
 - Kiln Dust (cements)
 - Cement Clinker (may not cement)

CaCO₃ (slow to dissolve)

MOBILITY & OXIDATION STATE

Courtesy of Rose, Hawkes, and Webb

MOBILITY & OXIDATION STATE

Mn & Fe OXIDATION KINETICS

HALF-LIVES FOR OXYGENATION OF Fe(II) & Mn(II) SPECIES (OM=) MEANS BOUND TO A METAL OXIDE SURFACE

From Wehrli & Stumm (1989)

Encenharia e Gestão de Projete

Projeto Executivo para Tratamento Passivo do Efluente da Pilha de João Belo Unidade Jacobina Mineração Comércio – BA Yamana Gold

Best Professional paper in CBMinas, 2012. Belo Horizonte MG – Brasil.

ACID ROCK DRAINAGE (ARD) in mg/L

	Quartz Hill	Jacobina	Coal	Buckeye
рН	2.5	3.0	2.9	5.9
AI	60	20	36	21
Fe	750	1.8	180	580
Mn	80	1.2	50	20
Cu	55	0.12		0.03
Zn	150	0.20		0.24
Cd	0.80	0.003		
Pb	0.14			0.02
As	1.5	0.008		0.01
SO4	4000	184	2050	750

Estudo em Escala Piloto:

Sistema de tratamento passivo em escala de

bancada implantado na mina de Jacobina

(Fonte: Fregadolli, et. al., 2012)

Materials Used in Pilot Reactors Reactors (amts. In weight percent) SB2 Gen Fe1 Fe2 SB1 Substrate Wood Dust 20 30 35 40 40 Limestone 30 25 30 30 30 10 10 15 20 Sugarcane Bagasse **Legume Vegetation** 20 15 10 **Steel Dust** 10 10

10

10

10

10

10

Manure

Results (5 months)

			Reactors (Conc. In mg/L)				
Parameter	Reg Limit	Intake	Gen	Fe1	Fe2	SB1	SB2
AI	0.10	20.7	0.02	0.02	0.02	0.02	0.03
Fe	0.30	1.44	0.01	0.05	1.4	0.32	0.01
Mn	0.10	1.95	2.2	2.2	3.2	2.5	1.3
Cu	0.009	0.15	0.002	<0.001	0.001	0.001	<0.001
SO4	250	209	76	32	28	23	134
рН		3.0	7.5	7.1	6.9	7.0	7.4

Conclusions

All reactors met the treatment objectives of Al removal

Excellent production of alkalinity through sulfate reduction and limestone dissolution

Mn was not removed in fact it appeared to increase in all reactors

Zero valent iron (steel dust) was not effective

Final substrate would depend upon availability of materials

Passive As & Mn Removal in Neutral MIW

Tom Wildeman

Dept. of Chemistry & Geochemistry

Colorado School of Mines

USA

Flavio Vasconcelos

HidroGeo

Belo Horizonte, MG, Brasil

Outline

As & Mn Geochemistry Experiment Descriptions Results Conclusions

- Eh vs. pH diagram:
- Fe, As and H₂O system:

- Eh vs. pH diagram:
- Mn and H₂O system:

AEROBIC BENCH-SCALE TESTS ALGAE CLOSE-UP

Water	Gold mine 1	Gold mine 2	Gold mine 3	Clear Creek	Reg. Limit
рН	6.8	6.3	7.1	6.9	
AI	0.03	0.03	0.06	0.05	0.10
As	2.1	0.2	0.03	BDL	0.01
Fe	0.01	0.05	0.003	BDL	0.30
Mn	0.14	0.13	5.0	0.003	0.10
SO4=	295	29	3400	78	250

Engenbaria e Gestão de Pro

Experiment 1

Clear Creek Water 2, 5, & 10 mg/L As Limestone Limestone plus Algae 34 Days

Can limestone remove arsenic?

No arsenic removal with limestone nor with limestone & algae

Experiment 2

- Clear Creek Water
- 2, 5, & 10 mg/L As
- Laterite from Minas Gerais
- Laterite plus Algae
- 27 Days

Is laterite removal of arsenic reasonable?

- Arsenic removal to below 0.010 mg/L in 2 days
- Algae impairs arsenic removal

Experiment 3

- Clear Creek Water
- 2, 5, & 10 mg/L As
- Laterite
- Laterite plus Algae
- 15 mg/L Mn in all flasks
- 8 days

Does manganese interfere with arsenic removal?

I[®] Congresso Latino-Americano de drenagem ácida de mina 1st latin American acid mine drainage congress 1[™] Congreso Latinoamericano de drenaje ácido de mina

- With laterite, As and Mn removal act independently
- Laterite removes most of the manganese
- The removal of arsenic within 2 days is confirmed
- Algae retards As removal but promotes Mn removal

Experiment 4

- Gold Mine 1 Water (2 mg/L As)
- Gold Mine 3 Water (5 mg/L Mn, 0.03 mg/L As, 3400 mg/L SO₄⁼)
- Laterite
- Laterite plus Algae
- 8 days

Using real mine waters, arsenic and manganese removal is confirmed

Removal of manganese using laterite is slow (over 8 days)

Conclusions

- Arsenic removal by laterite is promising
- The usual method of Mn removal by limestone and algae is confirmed.
- Using laterite, removal of Mn independent of As removal occurs but it is slow.
- Using laterite, algae is a detriment to As removal.

MUITO OBRIGADO!

61