

24 e 25 de novembro de 2021 Belo Horizonte • MG • Brasil

1ST LATIN AMERICAN ACID MINE DRAINAGE CONGRESS November 24-25, 2021 • Belo Horizonte • Mg • Brazil

1^{er} Congreso Latinoamericano de Drenaje ácido de Mina 24-25 de noviembre de 2021 • Belo Horizonte • Mg • Brazil

PROMOÇÃO

SANAP

INAP

The Often-Overlooked Environmental Impacts of Sulphide Oxidation: Neutral and Saline Rock Drainage

Amy L. Hudson, Ph.D. – Tetra Tech USA Scott Kingston – Tetra Tech Canada

Belo Horizonte, 25 de Novembro de 2021

Introduction

- Geochemistry is often the primary driver of environmental compliance challenges of mines
- Geochemistry characterization tends to be focused on acid rock drainage (ARD) / sulphide oxidation
- Metal loading from neutral rock drainage and saline drainage (NRD/SD) can be comparable to those released with ARD

Environmental Impacts of Mine Drainage

- Reduced quality of surrounding water
- Pollution of drinking water sources
- Decreased aquatic animal populations
- Injury and/or death to terrestrial animals
- Injury and/or death to plant species

Why does it matter?

- Mine water impacts represent single largest waste stream in the world
- In North America, there is ten times more solid mine waste produced than household garbage

TETRA TECH

Waste blending is a commonly applied waste management technique

What is NRD/SD?

- pH of drainage above 6.0
- NRD less than 1,000 mg/L sulphate
- SD greater than 1,000 mg/L sulphate

Minerals Related to Ore Deposits

Mineral	Composition
Pyrite	FeS ₂
Marcasite	FeS ₂
Chalcopyrite	CuFeS ₂
Chalcocite	Cu ₂ S
Sphalerite	ZnS
Galena	PbS
Millerite	NiS
Pyrrhotite	Fe(1-x)S (where 0 <x<0.2)< td=""></x<0.2)<>
Arsenopyrite	FeAsS
Cinnabar	HgS
(Source: Ferguson and Erickson 1988)	

TETRA TECH

Π.

Oxidation of Sulphides

Overall Oxygen Controlled Reaction:

4FeS₂ + 15O₂ + 14H₂O → 14Fe(OH)₃ + 8H₂SO₄ Step 1: FeS₂ + $^{7}/_{2}O_{2}$ + H₂O → 2SO₄²⁻ + 2H⁺ + Fe²⁺ Step 2: Fe²⁺ + $^{1}/_{4}O_{2}$ + H⁺ → Fe3+ + $^{1}/_{2}H_{2}O$ Step 3: Fe²⁺ + $^{1}/_{4}O_{2}$ + $^{5}/_{2}H_{2}O$ → Fe(OH)₃ + 2H⁺

Overall Iron Controlled Reaction:

 $FeS_2 + 14Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$ (at pH less than 3.0)

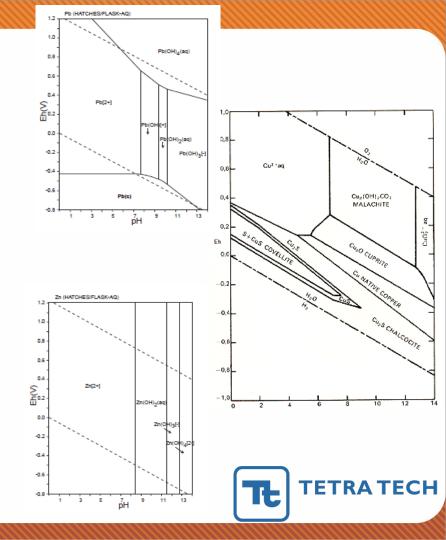
Dissolution of Carbonates

 $MCO_3 + 2H^+ \leftrightarrow M^{2+} + CO_2 + H_2O$ (below a pH of 6)

 $MCO_3 + H^+ \leftrightarrow M^{2+} + HCO_3^-$ (above a pH of 6)

 $MAl_2Si_2O_8 + 2H^+ + H2O \leftrightarrow M^{2+} + Al_2Si_2O_5(OH)_4$

- For most divalent metals the CO_3^{2-} is more basic than M^{2+} is acidic
- The acidity of M²⁺ is controlled by ability to release H⁺ when forming metalhydroxo complexes and ability to bind free OH⁻


Metals of Concern in NRD/SD

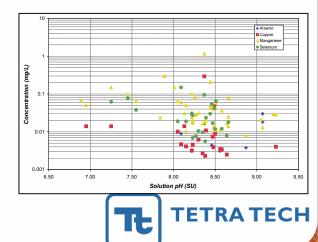
- Zinc
- Molybdenum
- Arsenic
- Antimony
- Chromium

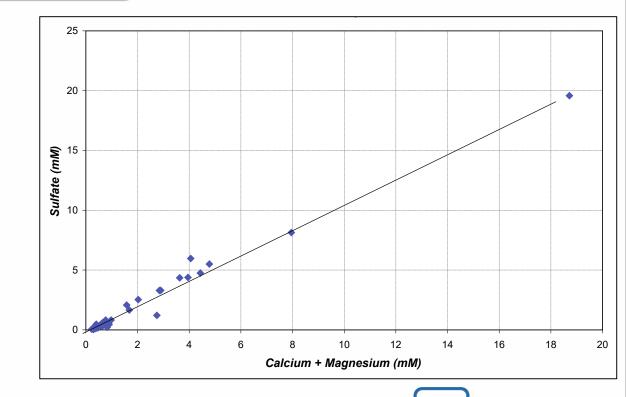
- Copper
- Lead
- Nickel
- Selenium
- Sulphate

- Copper, zinc, cadmium, and lead readily form complexes with sulphides and carbonates
- Mobility strongly influenced by presence of iron oxyhydroxides
- Under reducing conditions more likely to be mobilized in solution

- Mobility in solution depends on pH and redox
- Under oxidizing conditions:
 - Arsenic will be arsenate (analogous to phosphate)
 - Selenium will be selenate (analogous to sulphate)
- Under reducing conditions:
 - Arsenic will be arsenite
 - Selenium will be selenide
- Under intermediate redox conditions:
 - Selenium will be selenite
- Iron oxyhydroxides can adsorb arsenate and selenite

Examples of NRD/SD Impacted Waters


- Mine site in Finland with a high sulphide and low sulphide discharge (Heikken et al., 2009)
 - High sulphide discharge typical of ARD, except pH
 - Neutral pH; elevated metals Ni, Mn, Cu, Zn, Co
 - Elevated manganese due to carbonate dissolution
 - Low sulphide discharge (neutral pH; only elevated Ni)
 - Water quality heavily influenced by presence or absence of oxyhydroxides


Examples of NRD/SD Impacted Waters (cont.)

- Greenfield copper mine (southern Arizona)
 - Baseline characterization identified Cu, Zn, Fe, Al, Mg, K, Mn, and Na as the most abundant trace elements
 - Kinetic testing showed neutral pH conditions
 - Laboratory testing mostly non-detect for metals
 - Field testing resulted in higher concentrations
 - Measurable Cu, Mn, As, Se, and Zn in leachate
 - Due to water rock ratio and particle size

- When sulphate produced due to sulphide oxidation is neutralized by carbonate dissolution ratio of carbonate to sulphate is 2:1
- When sulphide oxidation reactions are not being neutralized, sulphate concentrations remain steady over time

Conclusions

- Both ARD and NRD/SD have the potential to result in poor water quality
 - Significant metal or dissolved solids loading
- Waste blending can still lead to adverse discharge conditions

ΤΕΤRΑ ΤΕСΗ

 Baseline characterization studies should consider the potential of NRD/SD

Thank You!

Questions?

amy.hudson@tetratech.com