

Static Tests to Assess Acid Mine Drainage Potential of Copper Sulphide Flotation Tailings

Ruberlan Silva¹; Danielly Couto¹; Aline Tavares²; Morgana Ribeiro¹; Luzia Chaves¹; Lorena Guimarães¹; Kely Fonseca¹

- 1. Vale S.A., Mineral Development Centre, Brazil. ruberlan.silva@vale.com
- 2. Vale S.A., Project Studies Asia Pacific, Brazil.

Belo Horizonte, 24 de Novembro de 2021.

AGENDA

- ✤ INTRODUCTION AND OBJECTIVE.
- ✤ METHODOLOGY.
- ✤ RESULTS AND DISCUSSION.
- ✤ CONCLUSION.

INTRODUCTION AND OBJECTIVE

- **Copper is important metal** in the construction, appliance and energy industries.
- Main Cu-bearing minerals aiming the production of copper metal are chalcopyrite (CuFeS₂), bornite (Cu₅FeS₄), chalcocite (Cu₂S), enargite (Cu₃AsS₄), and covellite (CuS).
- Most copper sulphides mines generate a large amount of tailing after its concentration (flotation), with mass recovery varying only from 2% up 5% of total feed ore.
- The copper tailings have been either piled up or stored in dams, which requires complex structures and huge investment, as well as cost-effective maintenance and environmental fees.
- It is worthwhile to mention that the storage of copper tailings in dams also represents a threat to the surrounding environment.
- Copper flotation tailings contain a significant amount of non-copper sulphides minerals and a low amount of copper sulphides minerals that can generate effluent resulting from the oxidation of sulfides when they are exposed to oxygen and water.
- Low mine water pH will occur if the rate of acid generation due to sulfide oxidation is more than acid consumption by neutralizing minerals.

The objective of this study was to evaluate the acid mine drainage (AMD) potential of different copper flotation tailings using **static acid drainage tests.**

Figure 1. Roman Portal with Acid Rock Drainage – Spain INAP, The international Network for Acid Prevention (2014)

- Copper ore is crushed and ground to P₈₀ between 150 and 250 μm to achieve the required liberation for the rougher flotation stage. In this step, it is expected to achieve the highest copper recovery.
- The rougher concentrate is submitted to regrind (P₈₀ between 25 and 50 μm), followed by cleaner/recleaner flotation stage aiming to achieve the Cu grade desired.
- The cleaner tailing feeds the scavenger flotation stage. The rougher and scavenger tailings will form the final tailing that will be sent to the DAM.
- The DAM overflow effluent could be recycled to industrial plant or treated to generate the treated effluent that could be disposed or also recycled to industrial plant.

METHODOLOGY

Element Ana		Ana	nalytical methodology				
Ca, Mg, Al, Fe, Mn, P and Si		Calc	Calcination 600°C, fusion Na ₂ CO ₃ /Na ₂ B ₄ O ₇ , reading ICP-OES				
S sulphide		Lead	Leaching calcium carbonate, direct combustion, reading infra-red				
Cu, As		Tota	Total solubilization with aqua regia and reading ICP-OES.				
S		Dire	ect combustion and reading Infra-red from LECO.				
К		Solu	olubilization in HCl + HF and reading ICP-OES.				
Fluorine		Fusion KNO ₃ /KOH, dissolution water and reading selective ion electrode.					
Chlorine F		Fusi	usion KNO ₃ /KOH, dissolution in water and titration with AgNO ₃ solution.				
			Table 2. Analytical procedures for assays for liquors				
	Eleme	ent	Analytical methodology				
	Meta	ls	USEPA Method 3005A (1992).				
	Anion	S	USEPA Method 300.0 (1993) and USEPA Method 300.1 (1997).				
Alkalir Acidity		nity	SMWW, 23rd Edition - Method 2320 (2020).				
		у	SMWW, 23rd Edition - Method 2310 (2018).				

Table 1. Analytical procedures for assays for solids samples

Mineralogical: QEMSCAN. Mineral data were correlated with chemical assays.

4/12

RESULTS AND DISCUSSION Samples

Five flotation copper tailings identified as Samples I, II, III, IV and V, being:

- Sample I is from an industrial operation in Brazil,
 Samples II, III, IV and V are from pilot plant tests.
- Samples I and II are final flotation tailings from two different copper sulphide ores which the main Cubearing mineral is chalcopyrite (CuFeS₂).
- Samples III, IV and V are flotation tailings from a different copper sulphide ore which the main Cubearing minerals are covellite (CuS) and enargite (Cu₃AsS₄). Sample III is the rougher tailing, Sample IV is the scavenger tailing and Sample V the final tailing, (70 wt% of sample III and 30 wt% of sample IV).

Chemical assays

Table 3. Chemical assays of five copper sulphide flotation tailings

Element/ ID	Sample I	Sample II	Sample III	Sample IV	Sample V
Cu total (wt%)	0.06	<u>0.18</u>	0.05	<u>0.51</u>	<u>0.19</u>
S total (wt%)	0.09	0.22	3.79	26.40	<u>10.30</u>
S sulphide (wt%)	0.07	0.09	0.08	23.57	7.87
K ₂ O total (wt%)	2.18	<u>0.94</u>	3.37	2.25	3.00
Al ₂ O ₃ total (wt%)	<u>1.71</u>	8.00	9.45	7.53	8.79
CaO total (wt%)	<u>7.58</u>	2.74	0.10	<0.09	0.09
Fe ₂ O ₃ total (wt%)	15.77	<u>29.02</u>	0.98	<u>29.01</u>	9.57
MgO total (%)	4.56	4.50	<0.25	<0.25	<0.25
MnO total (wt%)	<0.07	0.52	<0.07	<0.07	<0.07
P ₂ O ₅ total (wt%)	1.81	0.44	0.12	0.13	<0.12
SiO ₂ total (wt%)	48.07	45.73	<u>73.65</u>	35.44	<u>62.31</u>
F total (mg/kg)	<u>1080</u>	<u>1226</u>	416	308	365
Cl total (mg/kg)	<u>6042</u>	685	434	596	445
As total (mg/kg)	<4	10	10	<u>146</u>	<u>65</u>
U total (mg/kg)	2	<u>55</u>	0	0	1
S sulphide/ S total mass ratio	0.80	0.40	0.02	0.89	0.76
K ₂ O+CaO+MgO (wt%)	14.32	8.18	<3.71	<2.59	<3.34
					6/12

RESULTS AND DISCUSSION

Mineralogy 100% 2 □ Other minerals 3 8 Ilmenite 90% 18 19 10 17 Fe Oxi-hydroxides 3 Disseminated Fe-sulphides 80% 3 Alunite 3 Pvrite 29 8 70% Disseminated Cu sulphides 8 5)42 Mineral (wt%) 20% 70% Cu-sulphides 2 5 □(Ca, Mg) carbonates 3 4 Apatite Garnet 24 17 1 74 Amphiboles 11 59 ■ AI silicates 30% 2 1 Muscovite 20% 20 Biotite 27 26 □ Chlorite 10% Scapolite 11 Feldspar 0% □Quartz Sample I Sample II Sample Sample V Ш IV

- Samples I and II present the most complex mineral assemblage, both have many Fe-Al silicates and Fe oxi-hydroxides.
- The main minerals in sample I are amphiboles (29 wt%), feldspar (20 wt%), scapolite (17 wt%), quartz (11 wt%), and Fe oxi-hydroxides (8 wt%), totalizing 84 wt% of the total mass.
- Sample II has quartz (27 wt%), chlorite (24 wt%), Fe oxihydroxides (18 wt%), amphiboles (8 wt%), and garnet (8 wt%), which correspond to 86 wt% of the total mass.
- Basically, sample III is composed of quartz (74 wt%) and alunite (19 wt%), representing 93 wt% of the total mass.
- Sample IV contains pyrite (42 wt%), quartz (27 wt%), aluminum silicates (11 wt%), alunite (106 wt%), and disseminated Fesulphides (7 wt%), which together are 96 wt% of the total mass.
- The main minerals in sample V are quartz (59 wt%), pyrite (13 wt%), and alunite (17 wt%), composing 89 wt% of the total mass.
- No pyrite in Samples I and II, only 0.3 wt% of pyrite in Sample III.

Table 5. Paste pH of five copper sulphide flotation tailings

RESULTS AND DISCUSSION

Paste pH

Parameter	Sample I	Sample II	Sample III	Sample IV	Sample V
Sample mass (g)	10.00	10.04	10.03	10.07	10.03
Deionized water mass (g)	3.29	3.25	2.51	2.45	2.42
Mass ratio (sample/deionized water)	3.0	3.1	4.0	4.1	4.1
Paste pH	9.19	8.10	4.46	3.56	3.71

✤ pH of deionized water of 6.48.

The lowest paste pH was obtained for samples III, IV, and V, lower than the deionized water (pH=6.48).

The low paste pH seems to be due to the presence of alunite in their compositions..

$$CaCO_{3(s)} + H_2O_{(I)} \rightarrow Ca^{2+}_{(aq)} + HCO_{3^{-}(aq)} + OH^{-}_{(aq)}$$
$$KAI_3(SO_4)_2(OH)_6(s) \rightarrow K^+_{(aq)} + 2SO_4^{2^{-}}_{(aq)} + 3AI^{3+}_{(aq)} + 6OH^{-}_{(aq)}$$

$$3AI_{(aq)}^{3+} + 9H_2O_{(I)} \rightarrow 3AI(OH)_{3(s)} + 9H_{(aq)}^{+}$$

8/12

RESULTS AND DISCUSSION

NAG pH

- High pyrite content in samples IV and
 V. It was not possible to measure the
 NAG pH of these samples.
- The oxygen released from hydrogen peroxide oxidizes the pyrite. As the reaction is exothermic, heat and gas were released, causing the solution to overflow from the flask;
- Covellite can also be oxidized;
- Additionally, the absence of calcium carbonate in sample III does not allow the neutralization of its acidity with the addition of hydrogen peroxide.

Table 6. NAG pH of five copper sulphide flotation tailings						
Parameter	Sample I	Sample II	Sample III	Sample IV	Sample V	
NAG pH	8.15	8.18 🤇	5.30	Not possible to measure	Not possible to measure	
			F	$H_2O_{2(I)} \rightarrow 1/2O_{2(g)}$	+ H ₂ O _(I)	
		F	$FeS_{2(s)} + 3.75O_{2(a)} + 3.50H_2O_{(l)} \rightarrow Fe(OH)_{3(s)} +$			

 $2SO_4^{2-}(aq) + 4H^+(aq) + heat$

 $H_2O_{(1)}$ + heat $\rightarrow H_2O_{(q)}$

 $CuS_{(s)} + 2O_{2(g)} \rightarrow Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$

High formation of gases Samples IV and V

RESULTS AND DISCUSSION

MABA

Table 7. MABA results of five copper sulphide flotation tailings

ID		AP (Calculated)	NP (Measured) (kg CaCO ₃ /t sample)			
		(kg CaCO ₃ / t sample)				
	Sample I	2.31	59.76			
	Sample II	2.71	34.39			
	Sample III	2.50	16.26			
	Sample IV	736.43	26.95			
	Sample V	245.95	46.00			
$AP:\ S_{(s)} + 3/2O_{2(g)} + H_2O_{(l)} \twoheadrightarrow H_2SO_{4(aq))}$						
4	$AP: CaCO_{3(s)} + H_2SO_{4(aq)} \rightarrow CaSO_{4(s)} + CO_{2(g)} + H_2O_{(s)} + CO_{2(g)} + CO_{2($					

NP:
$$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$$

Only samples IV and V present acid drainage potential since these two samples show NP/AP mass ratios lower than 1. The main reason for low NP/AP mass ratios is the respective high AP, being approximately 736 kg $CaCO_3/t$ for sample IV and 246 kg $CaCO_3/t$ for sample V.

RESULTS AND DISCUSSION

Classification of acid mine drainage (AMD) potential

NAF and PAF stand for Non-Acid Forming and Potential Acid Forming, respectively

ID	Paste pH (pH<5, AMD; pH>7, neutral	NAG pH (pH<4.5, AMD; pH>4.5, no AMD)	MABA NPR=(NP/AP) (kg CaCO ₃ / t sample) (NP/AP<1, AMD; NP/AP>4, no AMD)	Classification	
Sample I	9.19	8.15	>4	NAF	
Sample II	8.10	8.18	>4	NAF	
Sample III	4.46	5.30	>4	PAF	
Sample IV	3.56	Not possible to measure	<1	PAF	
Sample V	3.71	Not possible to measure	<1	PAF	

Table 8. Classification of samples for acid drainage potential

- Only samples IV and V could be classified as PAF or with a high potential to generate acidity liquor, and certainly with a high amount of metal dissolved.
- According to these results, it is recommended to carry out acid drainage kinetic tests with samples III, IV and V to determine the long-term weathering rates, such as sulphide oxidation, dissolution of neutralizing minerals, trace metal release, under oxygenated conditions, to evaluate lag time to acid generation and to provide reaction rates for geochemical modeling.

CONCLUSION

- Only samples III, IV, and V show Paste pH results lower than 5.0. The high pyrite content in samples IV and V and the high alunite content in sample III are the main reasons for the respective low Paste pH.
- The NAG pH of Samples IV and V (high pyrite contents) were not possible to measure. The low NAG pH obtained with sample III was due to presence of covellite (CuS) in its composition. The high NAG pH for samples I and II are explained by the high K₂O+CaO+MgO in their compositions.
- According to the MABA tests results, only samples IV and V present acid drainage potential because these two samples show NP/AP<1. On the other hand, samples I, II, and III present NP/AP>4, not showing potential to generate acid drainage.
- Based on the results of static acid drainage tests, only samples III, IV and V could be classified as Potential Acid Forming (PAF), showing a high potential to generate acidity liquor, and certainly with a high amount of metal dissolved. The samples I and II were classified as Non-Acid Forming (NAF).
- Due to these results, it is recommended to carry out acid drainage kinetic tests with samples III, IV and V to determine the long-term weathering rates, such as sulphide oxidation, dissolution and neutralizing minerals, trace metal release, under oxygenated conditions, to evaluate lag time to acid generation and to provide reaction rates for geochemical modeling.